5.3-非关系型数据库存储
NoSQL,全称 Not Only SQL,意为不仅仅是 SQL,泛指非关系型数据库。NoSQL 是基于键值对的,而且不需要经过 SQL 层的解析,数据之间没有耦合性,性能非常高。
非关系型数据库又可细分如下。
键值存储数据库:代表有 Redis、Voldemort 和 Oracle BDB 等。
列存储数据库:代表有 Cassandra、HBase 和 Riak 等。
文档型数据库:代表有 CouchDB 和 MongoDB 等。
图形数据库:代表有 Neo4J、InfoGrid 和 Infinite Graph 等。
对于爬虫的数据存储来说,一条数据可能存在某些字段提取失败而缺失的情况,而且数据可能随时调整。另外,数据之间还存在嵌套关系。如果使用关系型数据库存储,一是需要提前建表,二是如果存在数据嵌套关系的话,需要进行序列化操作才可以存储,这非常不方便。如果用了非关系型数据库,就可以避免一些麻烦,更简单高效。
本节中,我们主要介绍 MongoDB 和 Redis 的数据存储操作。
5.3.1 MongoDB 存储
MongoDB 是由 C++ 语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似 JSON 对象,它的字段值可以包含其他文档、数组及文档数组,非常灵活。在这一节中,我们就来看看 Python 3 下 MongoDB 的存储操作。
1. 准备工作
在开始之前,请确保已经安装好了 MongoDB 并启动了其服务,并且安装好了 Python 的 PyMongo 库。如果没有安装,可以参考第 1 章。
2. 连接 MongoDB
连接 MongoDB 时,我们需要使用 PyMongo 库里面的 MongoClient。一般来说,传入 MongoDB 的 IP 及端口即可,其中第一个参数为地址 host,第二个参数为端口 port(如果不给它传递参数,默认是 27017):
这样就可以创建 MongoDB 的连接对象了。
另外,MongoClient 的第一个参数 host 还可以直接传入 MongoDB 的连接字符串,它以 mongodb 开头,例如:
这也可以达到同样的连接效果。
3. 指定数据库
MongoDB 中可以建立多个数据库,接下来我们需要指定操作哪个数据库。这里我们以 test 数据库为例来说明,下一步需要在程序中指定要使用的数据库:
这里调用 client 的 test 属性即可返回 test 数据库。当然,我们也可以这样指定:
这两种方式是等价的。
4. 指定集合
MongoDB 的每个数据库又包含许多集合(collection),它们类似于关系型数据库中的表。
下一步需要指定要操作的集合,这里指定一个集合名称为 students。与指定数据库类似,指定集合也有两种方式:
这样我们便声明了一个 Collection 对象。
5. 插入数据
接下来,便可以插入数据了。对于 students 这个集合,新建一条学生数据,这条数据以字典形式表示:
这里指定了学生的学号、姓名、年龄和性别。接下来,直接调用 collection 的 insert 方法即可插入数据,代码如下:
在 MongoDB 中,每条数据其实都有一个_id 属性来唯一标识。如果没有显式指明该属性,MongoDB 会自动产生一个 ObjectId 类型的_id 属性。insert() 方法会在执行后返回_id 值。
运行结果如下:
当然,我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:
返回结果是对应的_id 的集合:
实际上,在 PyMongo 3.x 版本中,官方已经不推荐使用 insert() 方法了。当然,继续使用也没有什么问题。官方推荐使用 insert_one() 和 insert_many() 方法来分别插入单条记录和多条记录,示例如下:
运行结果如下:
与 insert() 方法不同,这次返回的是 InsertOneResult 对象,我们可以调用其 inserted_id 属性获取_id。
对于 insert_many() 方法,我们可以将数据以列表形式传递,示例如下:
运行结果如下:
该方法返回的类型是 InsertManyResult,调用 inserted_ids 属性可以获取插入数据的_id 列表。
6. 查询
插入数据后,我们可以利用 find_one() 或 find() 方法进行查询,其中 find_one() 查询得到的是单个结果,find() 则返回一个生成器对象。示例如下:
这里我们查询 name 为 Mike 的数据,它的返回结果是字典类型,运行结果如下:
可以发现,它多了_id 属性,这就是 MongoDB 在插入过程中自动添加的。
此外,我们也可以根据 ObjectId 来查询,此时需要使用 bson 库里面的 objectid:
其查询结果依然是字典类型,具体如下:
当然,如果查询结果不存在,则会返回 None。
对于多条数据的查询,我们可以使用 find() 方法。例如,这里查找年龄为 20 的数据,示例如下:
运行结果如下:
返回结果是 Cursor 类型,它相当于一个生成器,我们需要遍历取到所有的结果,其中每个结果都是字典类型。
如果要查询年龄大于 20 的数据,则写法如下:
这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号 $gt,意思是大于,键值为 20。
这里将比较符号归纳为表 5-3。
表 5-3 比较符号
另外,还可以进行正则匹配查询。例如,查询名字以 M 开头的学生数据,示例如下:
这里使用 $regex 来指定正则匹配,^M.* 代表以 M 开头的正则表达式。
这里将一些功能符号再归类为表 5-4。
表 5-4 功能符号
关于这些操作的更详细用法,可以在 MongoDB 官方文档找到: https://docs.mongodb.com/manual/reference/operator/query/。
7. 计数
要统计查询结果有多少条数据,可以调用 count() 方法。比如,统计所有数据条数:
或者统计符合某个条件的数据:
运行结果是一个数值,即符合条件的数据条数。
8. 排序
排序时,直接调用 sort() 方法,并在其中传入排序的字段及升降序标志即可。示例如下:
运行结果如下:
这里我们调用 pymongo.ASCENDING 指定升序。如果要降序排列,可以传入 pymongo.DESCENDING。
9. 偏移
在某些情况下,我们可能想只取某几个元素,这时可以利用 skip() 方法偏移几个位置,比如偏移 2,就忽略前两个元素,得到第三个及以后的元素:
运行结果如下:
另外,还可以用 limit() 方法指定要取的结果个数,示例如下:
运行结果如下:
如果不使用 limit() 方法,原本会返回三个结果,加了限制后,会截取两个结果返回。
值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,因为这样很可能导致内存溢出。此时可以使用类似如下操作来查询:
这时需要记录好上次查询的_id。
10. 更新
对于数据更新,我们可以使用 update() 方法,指定更新的条件和更新后的数据即可。例如:
这里我们要更新 name 为 Kevin 的数据的年龄:首先指定查询条件,然后将数据查询出来,修改年龄后调用 update() 方法将原条件和修改后的数据传入。
运行结果如下:
返回结果是字典形式,ok 代表执行成功,nModified 代表影响的数据条数。
另外,我们也可以使用 $set 操作符对数据进行更新,代码如下:
这样可以只更新 student 字典内存在的字段。如果原先还有其他字段,则不会更新,也不会删除。而如果不用 $set 的话,则会把之前的数据全部用 student 字典替换;如果原本存在其他字段,则会被删除。
另外,update() 方法其实也是官方不推荐使用的方法。这里也分为 update_one() 方法和 update_many() 方法,用法更加严格,它们的第二个参数需要使用 $ 类型操作符作为字典的键名,示例如下:
这里调用了 update_one() 方法,第二个参数不能再直接传入修改后的字典,而是需要使用 {'$set': student} 这样的形式,其返回结果是 UpdateResult 类型。然后分别调用 matched_count 和 modified_count 属性,可以获得匹配的数据条数和影响的数据条数。
运行结果如下:
我们再看一个例子:
这里指定查询条件为年龄大于 20,然后更新条件为 {'$inc': {'age': 1}},也就是年龄加 1,执行之后会将第一条符合条件的数据年龄加 1。
运行结果如下:
可以看到匹配条数为 1 条,影响条数也为 1 条。
如果调用 update_many() 方法,则会将所有符合条件的数据都更新,示例如下:
这时匹配条数就不再为 1 条了,运行结果如下:
可以看到,这时所有匹配到的数据都会被更新。
11. 删除
删除操作比较简单,直接调用 remove() 方法指定删除的条件即可,此时符合条件的所有数据均会被删除。示例如下:
运行结果如下:
另外,这里依然存在两个新的推荐方法 ——delete_one() 和 delete_many()。示例如下:
运行结果如下:
delete_one() 即删除第一条符合条件的数据,delete_many() 即删除所有符合条件的数据。它们的返回结果都是 DeleteResult 类型,可以调用 deleted_count 属性获取删除的数据条数。
12. 其他操作
另外,PyMongo 还提供了一些组合方法,如 find_one_and_delete()、find_one_and_replace() 和 find_one_and_update(),它们是查找后删除、替换和更新操作,其用法与上述方法基本一致。
另外,还可以对索引进行操作,相关方法有 create_index()、create_indexes() 和 drop_index() 等。
关于 PyMongo 的详细用法,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/collection.html。
另外,还有对数据库和集合本身等的一些操作,这里不再一一讲解,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/。
本节讲解了使用 PyMongo 操作 MongoDB 进行数据增删改查的方法,后面我们会在实战案例中应用这些操作进行数据存储。
5.3.2 Redis 存储
Redis 是一个基于内存的高效的键值型非关系型数据库,存取效率极高,而且支持多种存储数据结构,使用也非常简单。本节中,我们就来介绍一下 Python 的 Redis 操作,主要介绍 redis-py 这个库的用法。
1. 准备工作
在开始之前,请确保已经安装好了 Redis 及 redis-py 库。如果要做数据导入 / 导出操作的话,还需要安装 RedisDump。如果没有安装,可以参考第 1 章。
2. Redis 和 StrictRedis
redis-py 库提供两个类 Redis 和 StrictRedis 来实现 Redis 的命令操作。
StrictRedis 实现了绝大部分官方的命令,参数也一一对应,比如 set 方法就对应 Redis 命令的 set 方法。而 Redis 是 StrictRedis 的子类,它的主要功能是用于向后兼容旧版本库里的几个方法。为了做兼容,它将方法做了改写,比如 lrem 方法就将 value 和 num 参数的位置互换,这和 Redis 命令行的命令参数不一致。
官方推荐使用 StrictRedis,所以本节中我们也用 StrictRedis 类的相关方法作演示。
3. 连接 Redis
现在我们已经在本地安装了 Redis 并运行在 6379 端口,密码设置为 foobared。那么,可以用如下示例连接 Redis 并测试:
这里我们传入了 Redis 的地址、运行端口、使用的数据库和密码信息。在默认不传的情况下,这 4 个参数分别为 localhost、6379、0 和 None。首先声明了一个 StrictRedis 对象,接下来调用 set() 方法,设置一个键值对,然后将其获取并打印。
运行结果如下:
这说明我们连接成功,并可以执行 set 和 get 操作了。
当然,我们还可以使用 ConnectionPool 来连接,示例如下:
这样的连接效果是一样的。观察源码可以发现,StrictRedis 内其实就是用 host 和 port 等参数又构造了一个 ConnectionPool,所以直接将 ConnectionPool 当作参数传给 StrictRedis 也一样。
另外,ConnectionPool 还支持通过 URL 来构建。URL 的格式支持有如下 3 种:
这 3 种 URL 分别表示创建 Redis TCP 连接、Redis TCP+SSL 连接、Redis UNIX socket 连接。我们只需要构造上面任意一种 URL 即可,其中 password 部分如果有则可以写,没有则可以省略。下面再用 URL 连接演示一下:
这里我们使用第一种连接字符串进行连接。首先,声明一个 Redis 连接字符串,然后调用 from_url() 方法创建 ConnectionPool,接着将其传给 StrictRedis 即可完成连接,所以使用 URL 的连接方式还是比较方便的。
4. 键操作
表 5-5 总结了键的一些判断和操作方法。
表 5-5 键的一些判断和操作方法
5. 字符串操作
Redis 支持最基本的键值对形式存储,用法总结如表 5-6 所示。
表 5-6 键值对形式存储
6. 列表操作
Redis 还提供了列表存储,列表内的元素可以重复,而且可以从两端存储,用法如表 5-7 所示。
表 5-7 列表操作
7. 集合操作
Redis 还提供了集合存储,集合中的元素都是不重复的,用法如表 5-8 所示。
表 5-8 集合操作
8. 有序集合操作
有序集合比集合多了一个分数字段,利用它可以对集合中的数据进行排序,其用法总结如表 5-9 所示。
表 5-9 有序集合操作
9. 散列操作
Redis 还提供了散列表的数据结构,我们可以用 name 指定一个散列表的名称,表内存储了各个键值对,用法总结如表 5-10 所示。
表 5-10 散列操作
10. RedisDump
RedisDump 提供了强大的 Redis 数据的导入和导出功能,现在就来看下它的具体用法。
首先,确保已经安装好了 RedisDump。
RedisDump 提供了两个可执行命令:redis-dump 用于导出数据,redis-load 用于导入数据。
redis-dump
首先,可以输入如下命令查看所有可选项:
运行结果如下:
其中 - u 代表 Redis 连接字符串,-d 代表数据库代号,-s 代表导出之后的休眠时间,-c 代表分块大小,默认是 10000,-f 代表导出时的过滤器,-O 代表禁用运行时优化,-V 用于显示版本,-D 表示开启调试。
我们拿本地的 Redis 做测试,运行在 6379 端口上,密码为 foobared,导出命令如下:
如果没有密码的话,可以不加密码前缀,命令如下:
运行之后,可以将本地 0 至 15 号数据库的所有数据输出出来,例如:
每条数据都包含 6 个字段,其中 db 即数据库代号,key 即键名,ttl 即该键值对的有效时间,type 即键值类型,value 即内容,size 即占用空间。
如果想要将其输出为 JSON 行文件,可以使用如下命令:
这样就可以成功将 Redis 的所有数据库的所有数据导出成 JSON 行文件了。
另外,可以使用 - d 参数指定某个数据库的导出,例如只导出 1 号数据库的内容:
如果只想导出特定的内容,比如想导出以 adsl 开头的数据,可以加入 - f 参数用来过滤,命令如下:
其中 - f 参数即 Redis 的 keys 命令的参数,可以写一些过滤规则。
redis-load
同样,我们可以首先输入如下命令查看所有可选项:
运行结果如下:
其中 - u 代表 Redis 连接字符串,-d 代表数据库代号,默认是全部,-s 代表导出之后的休眠时间,-n 代表不检测 UTF-8 编码,-V 表示显示版本,-D 表示开启调试。
我们可以将 JSON 行文件导入到 Redis 数据库中:
这样就可以成功将 JSON 行文件导入到数据库中了。
另外,下面的命令同样可以达到同样的效果:
本节中,我们不仅了解了 redis-py 对 Redis 数据库的一些基本操作,还演示了 RedisDump 对数据的导入导出操作。由于其便捷性和高效性,后面我们会利用 Redis 实现很多架构,如维护代理池、Cookies 池、ADSL 拨号代理池、Scrapy-Redis 分布式架构等,所以 Redis 的操作需要好好掌握。
Last updated