Python3网络爬虫开发实战
  • Introduction
  • 0-目录
  • 0.0-前言
  • 0.1-序一
  • 0.3-序二
  • 1-开发环境配置
  • 1.1-Python3的安装
  • 1.2-请求库的安装
  • 1.3-解析库的安装
  • 1.4-数据库的安装
  • 1.5-存储库的安装
  • 1.6-Web库的安装
  • 1.7-App爬取相关库的安装
  • 1.8-爬虫框架的安装
  • 1.9-部署相关库的安装
  • 2-爬虫基础
  • 2.1-HTTP基本原理
  • 2.2-Web网页基础
  • 2.3-爬虫基本原理
  • 2.4-会话和Cookies
  • 2.5-代理基本原理
  • 3-基本库的使用
  • 3.1-使用urllib
  • 3.2-使用requests
  • 3.3-正则表达式
  • 3.4-爬取猫眼电影排行
  • 4-解析库的使用
  • 4.1-XPath的使用
  • 4.2-BeautifulSoup的使用
  • 4.3-pyquery的使用
  • 5-数据存储
  • 5.1-文件存储
  • 5.2-关系型数据库存储
  • 5.3-非关系型数据库存储
  • 6-Ajax数据爬取
  • 6.1-什么是Ajax
  • 6.2-Ajax分析方法
  • 6.3-Ajax结果提取
  • 6.4-分析Ajax爬取今日头条街拍美图
  • 7-动态渲染页面抓取
  • 7.1-Selenium的使用
  • 7.2-Splash的使用
  • 7.3-Splash负载均衡配置
  • 7.4-使用Selenium爬取淘宝商品
  • 8-验证码的识别
  • 8.1-图形验证码的识别
  • 8.2-极验滑动验证码识别
  • 8.3-点触验证码识别
  • 8.4-微博宫格验证码识别
  • 9-代理的使用
  • 9.1-代理的设置
  • 9.2-代理池的维护
  • 9.3-付费代理的使用
  • 9.4-ADSL代理的使用
  • 9.5-使用代理爬取微信公众号文章
  • 10-模拟登录
  • 10.1-模拟登录并爬取GitHub
  • 10.2-Cookies池的搭建
  • 11-APP的爬取
  • 11.1-Charles的使用
  • 11.2-mitmproxy的使用
  • 11.3-mitmdump爬取“得到”App电子书信息
  • 11.4-Appium的使用
  • 11.5-Appium爬取微信朋友圈
  • 11.6-Appium+mitmdump爬取京东商品评论
  • 12-pyspider框架的使用
  • 12.1-pyspider框架介绍
  • 12.2-pyspider基本使用
  • 12.3-pyspider用法详解
  • 13-Scrapy框架的使用
  • 13.1-Scrapy框架介绍
  • 13.2-Scrapy入门
  • 13.3-Selector的用法
  • 13.4-Spider的用法
  • 13.5-Downloader Middleware的用法
  • 13.6-Spider Middleware的用法
  • 13.7-Item Pipeline的用法
  • 13.8-Scrapy对接Selenium
  • 13.9-Scrapy对接Splash
  • 13.10-Scrapy通用爬虫
  • 13.11-Scrapyrt的使用
  • 13.12-Scrapy对接Docker
  • 13.13-Scrapy爬取新浪微博
  • 14-分布式爬虫
  • 14.1-分布式爬虫理念
  • 14.2-Scrapy-Redis源码解析
  • 14.3-Scrapy分布式实现
  • 14.4-Bloom Filter的对接
  • 15-分布式爬虫的部署
  • 15.1-Scrapyd分布式部署
  • 15.2-Scrapyd-Client的使用
  • 15.3-Scrapyd对接Docker
  • 15.4-Scrapyd批量部署
  • 15.5-Gerapy分布式管理
Powered by GitBook
On this page
  • 1. 准备工作
  • 2. Scrapyd-Client 的功能
  • 3. Scrapyd-Client 部署
  • 4. 结语

Was this helpful?

15.2-Scrapyd-Client的使用

这里有现成的工具来完成部署过程,它叫作 Scrapyd-Client。本节将简单介绍使用 Scrapyd-Client 部署 Scrapy 项目的方法。

1. 准备工作

请先确保 Scrapyd-Client 已经正确安装,安装方式可以参考第 1 章的内容。

2. Scrapyd-Client 的功能

Scrapyd-Client 为了方便 Scrapy 项目的部署,提供两个功能:

  • 将项目打包成 Egg 文件。

  • 将打包生成的 Egg 文件通过 addversion.json 接口部署到 Scrapyd 上。

也就是说,Scrapyd-Client 帮我们把部署全部实现了,我们不需要再去关心 Egg 文件是怎样生成的,也不需要再去读 Egg 文件并请求接口上传了,这一切的操作只需要执行一个命令即可一键部署。

3. Scrapyd-Client 部署

要部署 Scrapy 项目,我们首先需要修改一下项目的配置文件,例如我们之前写的 Scrapy 微博爬虫项目,在项目的第一层会有一个 scrapy.cfg 文件,它的内容如下:

[settings]
default = weibo.settings

[deploy]
#url = http://localhost:6800/
project = weibo

在这里我们需要配置一下 deploy 部分,例如我们要将项目部署到 120.27.34.25 的 Scrapyd 上,就需要修改为如下内容:

[deploy]
url = http://120.27.34.25:6800/
project = weibo

这样我们再在 scrapy.cfg 文件所在路径执行如下命令:

scrapyd-deploy

运行结果如下:

Packing version 1501682277
Deploying to project "weibo" in http://120.27.34.25:6800/addversion.json
Server response (200):
{"status": "ok", "spiders": 1, "node_name": "datacrawl-vm", "project": "weibo", "version": "1501682277"}

返回这样的结果就代表部署成功了。

我们也可以指定项目版本,如果不指定的话默认为当前时间戳,指定的话通过 version 参数传递即可,例如:

scrapyd-deploy --version 201707131455

值得注意的是在 Python3 的 Scrapyd 1.2.0 版本中我们不要指定版本号为带字母的字符串,需要为纯数字,否则可能会出现报错。

另外如果我们有多台主机,我们可以配置各台主机的别名,例如可以修改配置文件为:

[deploy:vm1]
url = http://120.27.34.24:6800/
project = weibo

[deploy:vm2]
url = http://139.217.26.30:6800/
project = weibo

有多台主机的话就在此统一配置,一台主机对应一组配置,在 deploy 后面加上主机的别名即可,这样如果我们想将项目部署到 IP 为 139.217.26.30 的 vm2 主机,我们只需要执行如下命令:

scrapyd-deploy vm2

这样我们就可以将项目部署到名称为 vm2 的主机上了。

如此一来,如果我们有多台主机,我们只需要在 scrapy.cfg 文件中配置好各台主机的 Scrapyd 地址,然后调用 scrapyd-deploy 命令加主机名称即可实现部署,非常方便。

如果 Scrapyd 设置了访问限制的话,我们可以在配置文件中加入用户名和密码的配置,同时端口修改一下,修改成 Nginx 代理端口,如在第一章我们使用的是 6801,那么这里就需要改成 6801,修改如下:

[deploy:vm1]
url = http://120.27.34.24:6801/
project = weibo
username = admin
password = admin

[deploy:vm2]
url = http://139.217.26.30:6801/
project = weibo
username = germey
password = germey

这样通过加入 username 和 password 字段我们就可以在部署时自动进行 Auth 验证,然后成功实现部署。

4. 结语

本节介绍了利用 Scrapyd-Client 来方便地将项目部署到 Scrapyd 的过程,有了它部署不再是麻烦事。

Previous15.1-Scrapyd分布式部署Next15.3-Scrapyd对接Docker

Last updated 5 years ago

Was this helpful?