Powered By GitBook
5.1-文件存储
文件存储形式多种多样,比如可以保存成 TXT 纯文本形式,也可以保存为 JSON 格式、CSV 格式等,本节就来了解一下文本文件的存储方式。

5.1.1 TXT 文本存储

将数据保存到 TXT 文本的操作非常简单,而且 TXT 文本几乎兼容任何平台,但是这有个缺点,那就是不利于检索。所以如果对检索和数据结构要求不高,追求方便第一的话,可以采用 TXT 文本存储。本节中,我们就来看下如何利用 Python 保存 TXT 文本文件。

1. 本节目标

本节中,我们要保存知乎上 “发现” 页面的 “热门话题” 部分,将其问题和答案统一保存成文本形式。

2. 基本实例

首先,可以用 requests 将网页源代码获取下来,然后使用 pyquery 解析库解析,接下来将提取的标题、回答者、回答保存到文本,代码如下:
1
import requests
2
from pyquery import PyQuery as pq
3
4
url = 'https://www.zhihu.com/explore'
5
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
6
}
7
html = requests.get(url, headers=headers).text
8
doc = pq(html)
9
items = doc('.explore-tab .feed-item').items()
10
for item in items:
11
question = item.find('h2').text()
12
author = item.find('.author-link-line').text()
13
answer = pq(item.find('.content').html()).text()
14
file = open('explore.txt', 'a', encoding='utf-8')
15
file.write('\n'.join([question, author, answer]))
16
file.write('\n' + '=' * 50 + '\n')
17
file.close()
Copied!
这里主要是为了演示文件保存的方式,因此 requests 异常处理部分在此省去。首先,用 requests 提取知乎的 “发现” 页面,然后将热门话题的问题、回答者、答案全文提取出来,然后利用 Python 提供的 open 方法打开一个文本文件,获取一个文件操作对象,这里赋值为 file,接着利用 file 对象的 write 方法将提取的内容写入文件,最后调用 close 方法将其关闭,这样抓取的内容即可成功写入文本中了。
运行程序,可以发现在本地生成了一个 explore.txt 文件,其内容如图 5-1 所示。
图 5-1 文件内容
这样热门问答的内容就被保存成文本形式了。
这里 open 方法的第一个参数即要保存的目标文件名称,第二个参数为 a,代表以追加方式写入到文本。另外,我们还指定了文件的编码为 utf-8。最后,写入完成后,还需要调用 close 方法来关闭文件对象。

3. 打开方式

在刚才的实例中,open 方法的第二个参数设置成了 a,这样在每次写入文本时不会清空源文件,而是在文件末尾写入新的内容,这是一种文件打开方式。关于文件的打开方式,其实还有其他几种,这里简要介绍一下。
    r:以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。
    rb:以二进制只读方式打开一个文件。文件指针将会放在文件的开头。
    r+:以读写方式打开一个文件。文件指针将会放在文件的开头。
    rb+:以二进制读写方式打开一个文件。文件指针将会放在文件的开头。
    w:以写入方式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。
    wb:以二进制写入方式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。
    w+:以读写方式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。
    wb+:以二进制读写格式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。
    a:以追加方式打开一个文件。如果该文件已存在,文件指针将会放在文件结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,则创建新文件来写入。
    ab:以二进制追加方式打开一个文件。如果该文件已存在,则文件指针将会放在文件结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,则创建新文件来写入。
    a+:以读写方式打开一个文件。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,则创建新文件来读写。
    ab+:以二进制追加方式打开一个文件。如果该文件已存在,则文件指针将会放在文件结尾。如果该文件不存在,则创建新文件用于读写。

4. 简化写法

另外,文件写入还有一种简写方法,那就是使用 with as 语法。在 with 控制块结束时,文件会自动关闭,所以就不需要再调用 close 方法了。这种保存方式可以简写如下:
1
with open('explore.txt', 'a', encoding='utf-8') as file:
2
file.write('\n'.join([question, author, answer]))
3
file.write('\n' + '=' * 50 + '\n')
Copied!
如果想保存时将原文清空,那么可以将第二个参数改写为 w,代码如下:
1
with open('explore.txt', 'w', encoding='utf-8') as file:
2
file.write('\n'.join([question, author, answer]))
3
file.write('\n' + '=' * 50 + '\n')
Copied!
上面便是利用 Python 将结果保存为 TXT 文件的方法,这种方法简单易用,操作高效,是一种最基本的保存数据的方法。

5.1.2 JSON 文件存储

JSON,全称为 JavaScript Object Notation, 也就是 JavaScript 对象标记,它通过对象和数组的组合来表示数据,构造简洁但是结构化程度非常高,是一种轻量级的数据交换格式。本节中,我们就来了解如何利用 Python 保存数据到 JSON 文件。

1. 对象和数组

在 JavaScript 语言中,一切都是对象。因此,任何支持的类型都可以通过 JSON 来表示,例如字符串、数字、对象、数组等,但是对象和数组是比较特殊且常用的两种类型,下面简要介绍一下它们。
对象:它在 JavaScript 中是使用花括号 {} 包裹起来的内容,数据结构为 {key1:value1, key2:value2, ...} 的键值对结构。在面向对象的语言中,key 为对象的属性,value 为对应的值。键名可以使用整数和字符串来表示。值的类型可以是任意类型。
数组:数组在 JavaScript 中是方括号 [] 包裹起来的内容,数据结构为 ["java", "javascript", "vb", ...] 的索引结构。在 JavaScript 中,数组是一种比较特殊的数据类型,它也可以像对象那样使用键值对,但还是索引用得多。同样,值的类型可以是任意类型。
所以,一个 JSON 对象可以写为如下形式:
1
[{
2
"name": "Bob",
3
"gender": "male",
4
"birthday": "1992-10-18"
5
}, {
6
"name": "Selina",
7
"gender": "female",
8
"birthday": "1995-10-18"
9
}]
Copied!
由中括号包围的就相当于列表类型,列表中的每个元素可以是任意类型,这个示例中它是字典类型,由大括号包围。
JSON 可以由以上两种形式自由组合而成,可以无限次嵌套,结构清晰,是数据交换的极佳方式。

2. 读取 JSON

Python 为我们提供了简单易用的 JSON 库来实现 JSON 文件的读写操作,我们可以调用 JSON 库的 loads 方法将 JSON 文本字符串转为 JSON 对象,可以通过 dumps() 方法将 JSON 对象转为文本字符串。
例如,这里有一段 JSON 形式的字符串,它是 str 类型,我们用 Python 将其转换为可操作的数据结构,如列表或字典:
1
import json
2
3
str = '''
4
[{
5
"name": "Bob",
6
"gender": "male",
7
"birthday": "1992-10-18"
8
}, {
9
"name": "Selina",
10
"gender": "female",
11
"birthday": "1995-10-18"
12
}]
13
'''
14
print(type(str))
15
data = json.loads(str)
16
print(data)
17
print(type(data))
Copied!
运行结果如下:
1
<class'str'>
2
[{'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18'}, {'name': 'Selina', 'gender': 'female', 'birthday': '1995-10-18'}]
3
<class 'list'>
Copied!
这里使用 loads 方法将字符串转为 JSON 对象。由于最外层是中括号,所以最终的类型是列表类型。
这样一来,我们就可以用索引来获取对应的内容了。例如,如果想取第一个元素里的 name 属性,就可以使用如下方式:
1
data[0]['name']
2
data[0].get('name')
Copied!
得到的结果都是:
1
Bob
Copied!
通过中括号加 0 索引,可以得到第一个字典元素,然后再调用其键名即可得到相应的键值。获取键值时有两种方式,一种是中括号加键名,另一种是通过 get 方法传入键名。这里推荐使用 get 方法,这样如果键名不存在,则不会报错,会返回 None。另外,get 方法还可以传入第二个参数(即默认值),示例如下:
1
data[0].get('age')
2
data[0].get('age', 25)
Copied!
运行结果如下:
1
None
2
25
Copied!
这里我们尝试获取年龄 age,其实在原字典中该键名不存在,此时默认会返回 None。如果传入第二个参数(即默认值),那么在不存在的情况下返回该默认值。
值得注意的是,JSON 的数据需要用双引号来包围,不能使用单引号。例如,若使用如下形式表示,则会出现错误:
1
import json
2
3
str = '''
4
[{
5
'name': 'Bob',
6
'gender': 'male',
7
'birthday': '1992-10-18'
8
}]
9
'''
10
data = json.loads(str)
Copied!
运行结果如下:
1
json.decoder.JSONDecodeError: Expecting property name enclosed in double quotes: line 3 column 5 (char 8)
Copied!
这里会出现 JSON 解析错误的提示。这是因为这里数据用单引号来包围,请千万注意 JSON 字符串的表示需要用双引号,否则 loads 方法会解析失败。
如果从 JSON 文本中读取内容,例如这里有一个 data.json 文本文件,其内容是刚才定义的 JSON 字符串,我们可以先将文本文件内容读出,然后再利用 loads 方法转化:
1
import json
2
3
with open('data.json', 'r') as file:
4
str = file.read()
5
data = json.loads(str)
6
print(data)
Copied!
运行结果如下:
1
[{'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18'}, {'name': 'Selina', 'gender': 'female', 'birthday': '1995-10-18'}]
Copied!

3. 输出 JSON

另外,我们还可以调用 dumps 方法将 JSON 对象转化为字符串。例如,将上例中的列表重新写入文本:
1
import json
2
3
data = [{
4
'name': 'Bob',
5
'gender': 'male',
6
'birthday': '1992-10-18'
7
}]
8
with open('data.json', 'w') as file:
9
file.write(json.dumps(data))
Copied!
利用 dumps 方法,我们可以将 JSON 对象转为字符串,然后再调用文件的 write 方法写入文本,结果如图 5-2 所示。
图 5-2 写入结果
另外,如果想保存 JSON 的格式,可以再加一个参数 indent,代表缩进字符个数。示例如下:
1
with open('data.json', 'w') as file:
2
file.write(json.dumps(data, indent=2))
Copied!
此时写入结果如图 5-3 所示。
图 5-3 写入结果
这样得到的内容会自动带缩进,格式会更加清晰。
另外,如果 JSON 中包含中文字符,会怎么样呢?例如,我们将之前的 JSON 的部分值改为中文,再用之前的方法写入到文本:
1
import json
2
3
data = [{
4
'name': ' 王伟 ',
5
'gender': ' 男 ',
6
'birthday': '1992-10-18'
7
}]
8
with open('data.json', 'w') as file:
9
file.write(json.dumps(data, indent=2))
Copied!
写入结果如图 5-4 所示。
图 5-4 写入结果
可以看到,中文字符都变成了 Unicode 字符,这并不是我们想要的结果。
为了输出中文,还需要指定参数 ensure_ascii 为 False,另外还要规定文件输出的编码:
1
with open('data.json', 'w', encoding='utf-8') as file:
2
file.write(json.dumps(data, indent=2, ensure_ascii=False))
Copied!
写入结果如图 5-5 所示。
图 5-5 写入结果
可以发现,这样就可以输出 JSON 为中文了。
本节中,我们了解了用 Python 进行 JSON 文件读写的方法,后面做数据解析时经常会用到,建议熟练掌握。

5.1.3 CSV 文件存储

CSV,全称为 Comma-Separated Values,中文可以叫作逗号分隔值或字符分隔值,其文件以纯文本形式存储表格数据。该文件是一个字符序列,可以由任意数目的记录组成,记录间以某种换行符分隔。每条记录由字段组成,字段间的分隔符是其他字符或字符串,最常见的是逗号或制表符。不过所有记录都有完全相同的字段序列,相当于一个结构化表的纯文本形式。它比 Excel 文件更加简洁,XLS 文本是电子表格,它包含了文本、数值、公式和格式等内容,而 CSV 中不包含这些内容,就是特定字符分隔的纯文本,结构简单清晰。所以,有时候用 CSV 来保存数据是比较方便的。本节中,我们来讲解 Python 读取和写入 CSV 文件的过程。

1. 写入

这里先看一个最简单的例子:
1
import csv
2
3
with open('data.csv', 'w') as csvfile:
4
writer = csv.writer(csvfile)
5
writer.writerow(['id', 'name', 'age'])
6
writer.writerow(['10001', 'Mike', 20])
7
writer.writerow(['10002', 'Bob', 22])
8
writer.writerow(['10003', 'Jordan', 21])
Copied!
首先,打开 data.csv 文件,然后指定打开的模式为 w(即写入),获得文件句柄,随后调用 csv 库的 writer 方法初始化写入对象,传入该句柄,然后调用 writerow 方法传入每行的数据即可完成写入。
运行结束后,会生成一个名为 data.csv 的文件,此时数据就成功写入了。直接以文本形式打开的话,其内容如下:
1
id,name,age
2
10001,Mike,20
3
10002,Bob,22
4
10003,Jordan,21
Copied!
可以看到,写入的文本默认以逗号分隔,调用一次 writerow 方法即可写入一行数据。用 Excel 打开的结果如图 5-6 所示。
图 5-6 打开结果
如果想修改列与列之间的分隔符,可以传入 delimiter 参数,其代码如下:
1
import csv
2
3
with open('data.csv', 'w') as csvfile:
4
writer = csv.writer(csvfile, delimiter=' ')
5
writer.writerow(['id', 'name', 'age'])
6
writer.writerow(['10001', 'Mike', 20])
7
writer.writerow(['10002', 'Bob', 22])
8
writer.writerow(['10003', 'Jordan', 21])
Copied!
这里在初始化写入对象时传入 delimiter 为空格,此时输出结果的每一列就是以空格分隔了,内容如下:
1
id name age
2
10001 Mike 20
3
10002 Bob 22
4
10003 Jordan 21
Copied!
另外,我们也可以调用 writerows 方法同时写入多行,此时参数就需要为二维列表,例如:
1
import csv
2
3
with open('data.csv', 'w') as csvfile:
4
writer = csv.writer(csvfile)
5
writer.writerow(['id', 'name', 'age'])
6
writer.writerows([['10001', 'Mike', 20], ['10002', 'Bob', 22], ['10003', 'Jordan', 21]])
Copied!
输出效果是相同的,内容如下:
1
id,name,age
2
10001,Mike,20
3
10002,Bob,22
4
10003,Jordan,21
Copied!
但是一般情况下,爬虫爬取的都是结构化数据,我们一般会用字典来表示。在 csv 库中也提供了字典的写入方式,示例如下:
1
import csv
2
3
with open('data.csv', 'w') as csvfile:
4
fieldnames = ['id', 'name', 'age']
5
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
6
writer.writeheader()
7
writer.writerow({'id': '10001', 'name': 'Mike', 'age': 20})
8
writer.writerow({'id': '10002', 'name': 'Bob', 'age': 22})
9
writer.writerow({'id': '10003', 'name': 'Jordan', 'age': 21})
Copied!
这里先定义 3 个字段,用 fieldnames 表示,然后将其传给 DictWriter 来初始化一个字典写入对象,接着可以调用 writeheader 方法先写入头信息,然后再调用 writerow 方法传入相应字典即可。最终写入的结果是完全相同的,内容如下:
1
id,name,age
2
10001,Mike,20
3
10002,Bob,22
4
10003,Jordan,21
Copied!
这样就可以完成字典到 CSV 文件的写入了。
另外,如果想追加写入的话,可以修改文件的打开模式,即将 open 函数的第二个参数改成 a,代码如下:
1
import csv
2
3
with open('data.csv', 'a') as csvfile:
4
fieldnames = ['id', 'name', 'age']
5
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
6
writer.writerow({'id': '10004', 'name': 'Durant', 'age': 22})
Copied!
这样在上面的基础上再执行这段代码,文件内容便会变成:
1
id,name,age
2
10001,Mike,20
3
10002,Bob,22
4
10003,Jordan,21
5
10004,Durant,22
Copied!
可见,数据被追加写入到文件中。
如果要写入中文内容的话,可能会遇到字符编码的问题,此时需要给 open 参数指定编码格式。比如,这里再写入一行包含中文的数据,代码需要改写如下:
1
import csv
2
3
with open('data.csv', 'a') as csvfile:
4
fieldnames = ['id', 'name', 'age']
5
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
6
writer.writerow({'id': '10004', 'name': 'Durant', 'age': 22})
Copied!
这里需要给 open 函数指定编码,否则可能发生编码错误。
另外,如果接触过 pandas 等库的话,可以调用 DataFrame 对象的 to_csv 方法来将数据写入 CSV 文件中。

2. 读取

我们同样可以使用 csv 库来读取 CSV 文件。例如,将刚才写入的文件内容读取出来,相关代码如下:
1
import csv
2
3
with open('data.csv', 'r', encoding='utf-8') as csvfile:
4
reader = csv.reader(csvfile)
5
for row in reader:
6
print(row)
Copied!
运行结果如下:
1
['id', 'name', 'age']
2
['10001', 'Mike', '20']
3
['10002', 'Bob', '22']
4
['10003', 'Jordan', '21']
5
['10004', 'Durant', '22']
6
['10005', ' 王伟 ', '22']
Copied!
这里我们构造的是 Reader 对象,通过遍历输出了每行的内容,每一行都是一个列表形式。注意,如果 CSV 文件中包含中文的话,还需要指定文件编码。
另外,如果接触过 pandas 的话,可以利用 read_csv 方法将数据从 CSV 中读取出来,例如:
1
import pandas as pd
2
3
df = pd.read_csv('data.csv')
4
print(df)
Copied!
运行结果如下:
1
id name age
2
0 10001 Mike 20
3
1 10002 Bob 22
4
2 10003 Jordan 21
5
3 10004 Durant 22
6
4 10005 王伟 22
Copied!
在做数据分析的时候,此种方法用得比较多,也是一种比较方便地读取 CSV 文件的方法。
本节中,我们了解了 CSV 文件的写入和读取方式。这也是一种常用的数据存储方式,需要熟练掌握。
Last modified 2yr ago