Python3网络爬虫开发实战
  • Introduction
  • 0-目录
  • 0.0-前言
  • 0.1-序一
  • 0.3-序二
  • 1-开发环境配置
  • 1.1-Python3的安装
  • 1.2-请求库的安装
  • 1.3-解析库的安装
  • 1.4-数据库的安装
  • 1.5-存储库的安装
  • 1.6-Web库的安装
  • 1.7-App爬取相关库的安装
  • 1.8-爬虫框架的安装
  • 1.9-部署相关库的安装
  • 2-爬虫基础
  • 2.1-HTTP基本原理
  • 2.2-Web网页基础
  • 2.3-爬虫基本原理
  • 2.4-会话和Cookies
  • 2.5-代理基本原理
  • 3-基本库的使用
  • 3.1-使用urllib
  • 3.2-使用requests
  • 3.3-正则表达式
  • 3.4-爬取猫眼电影排行
  • 4-解析库的使用
  • 4.1-XPath的使用
  • 4.2-BeautifulSoup的使用
  • 4.3-pyquery的使用
  • 5-数据存储
  • 5.1-文件存储
  • 5.2-关系型数据库存储
  • 5.3-非关系型数据库存储
  • 6-Ajax数据爬取
  • 6.1-什么是Ajax
  • 6.2-Ajax分析方法
  • 6.3-Ajax结果提取
  • 6.4-分析Ajax爬取今日头条街拍美图
  • 7-动态渲染页面抓取
  • 7.1-Selenium的使用
  • 7.2-Splash的使用
  • 7.3-Splash负载均衡配置
  • 7.4-使用Selenium爬取淘宝商品
  • 8-验证码的识别
  • 8.1-图形验证码的识别
  • 8.2-极验滑动验证码识别
  • 8.3-点触验证码识别
  • 8.4-微博宫格验证码识别
  • 9-代理的使用
  • 9.1-代理的设置
  • 9.2-代理池的维护
  • 9.3-付费代理的使用
  • 9.4-ADSL代理的使用
  • 9.5-使用代理爬取微信公众号文章
  • 10-模拟登录
  • 10.1-模拟登录并爬取GitHub
  • 10.2-Cookies池的搭建
  • 11-APP的爬取
  • 11.1-Charles的使用
  • 11.2-mitmproxy的使用
  • 11.3-mitmdump爬取“得到”App电子书信息
  • 11.4-Appium的使用
  • 11.5-Appium爬取微信朋友圈
  • 11.6-Appium+mitmdump爬取京东商品评论
  • 12-pyspider框架的使用
  • 12.1-pyspider框架介绍
  • 12.2-pyspider基本使用
  • 12.3-pyspider用法详解
  • 13-Scrapy框架的使用
  • 13.1-Scrapy框架介绍
  • 13.2-Scrapy入门
  • 13.3-Selector的用法
  • 13.4-Spider的用法
  • 13.5-Downloader Middleware的用法
  • 13.6-Spider Middleware的用法
  • 13.7-Item Pipeline的用法
  • 13.8-Scrapy对接Selenium
  • 13.9-Scrapy对接Splash
  • 13.10-Scrapy通用爬虫
  • 13.11-Scrapyrt的使用
  • 13.12-Scrapy对接Docker
  • 13.13-Scrapy爬取新浪微博
  • 14-分布式爬虫
  • 14.1-分布式爬虫理念
  • 14.2-Scrapy-Redis源码解析
  • 14.3-Scrapy分布式实现
  • 14.4-Bloom Filter的对接
  • 15-分布式爬虫的部署
  • 15.1-Scrapyd分布式部署
  • 15.2-Scrapyd-Client的使用
  • 15.3-Scrapyd对接Docker
  • 15.4-Scrapyd批量部署
  • 15.5-Gerapy分布式管理
Powered by GitBook
On this page

Was this helpful?

11-APP的爬取

前文介绍的都是爬取 Web 网页的内容。随着移动互联网的发展,越来越多的企业并没有提供 Web 网页端的服务,而是直接开发了 App,更多更全的信息都是通过 App 来展示的。那么针对 App 我们可以爬取吗?当然可以。

App 的爬取相比 Web 端爬取更加容易,反爬虫能力没有那么强,而且数据大多是以 JSON 形式传输的,解析更加简单。在 Web 端,我们可以通过浏览器的开发者工具监听到各个网络请求和响应过程,在 App 端如果想要查看这些内容就需要借助抓包软件。常用的抓包软件有 WireShark、Filddler、Charles、mitmproxy、AnyProxy 等,它们的原理基本是相同的。我们可以通过设置代理的方式将手机处于抓包软件的监听之下,这样便可以看到 App 在运行过程中发生的所有请求和响应了,相当于分析 Ajax 一样。如果这些请求的 URL、参数等都是有规律的,那么总结出规律直接用程序模拟爬取即可,如果它们没有规律,那么我们可以利用另一个工具 mitmdump 对接 Python 脚本直接处理 Response。另外,App 的爬取肯定不能由人来完成,也需要做到自动化,所以我们还要对 App 进行自动化控制,这里用到的库是 Appium。

本章将介绍 Charles、mitmproxy、mitmdump、Appium 等库的用法。掌握了这些内容,我们可以完成绝大多数 App 数据的爬取。

Previous10.2-Cookies池的搭建Next11.1-Charles的使用

Last updated 5 years ago

Was this helpful?